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Introduction to the Fourth Edition

In memory of J. E. Alouf (1929–2014)

The first edition of the Comprehensive Sourcebook of Bacterial Protein Toxins was 
published by J. E. Alouf and J. H. Freer in 1991, for the purpose of collecting in a 
book accessible to scientists, biologists, teachers, and students the basic knowledge of 
the fascinating world of the bacterial protein toxins. Indeed, these molecules produced 
by pathogenic and environmental bacteria are extremely diverse in terms of their com-
position, structure, size, biochemical properties, and mode of interaction with target 
cells. During the last several decades, numerous bacterial toxins have been described 
exhibiting characteristics like recognition of novel receptors, novel enzymatic activ-
ity, novel mode of entry into cells, or novel intracellular targets. In the first edition, 
J. E. Alouf and J. H. Freer not only gave detailed descriptions of individual toxins, 
but also presented pertinent reviews pointing out the common structural and func-
tional aspects of toxin families, as well as the genetic mechanisms regulating toxin 
expression. Each of the previous editions of this book have included the most recent 
advances of this rapidly moving world of toxins. This edition, coming out nine years 
after the last one, is in keeping with this series, with the main objective to update 
recently acquired knowledge on both previously known and newly discovered toxins, 
to describe their common features which allow a better understanding of their evolu-
tion and their role in the pathogenesis, and to highlight novel applications that have 
emerged over the past decade. Indeed, the multifaceted aspects of bacterial toxins are 
the object of multidisciplinary approaches from microbiology, cell biology, molecular 
biology, genetics, biochemistry, biophysics, and structural biology; and this book dis-
cusses multiple applications, including therapeutic tools, development of inhibitors, 
and countermeasures.

J. E. Alouf was the main force behind the writing of Comprehensive Sourcebook 
of Bacterial Protein Toxins. His encyclopedic formation and education, as well as his 
interactions with many scientists in the domain of toxins (notably through the organi-
zation of the European Workshop on Bacterial Toxins) facilitated the involvement in 
this project of many of the most eminent specialists in the fields of toxin studies and 
bacterial pathogenesis. The idea of organizing high-standard scientific workshops in 
Europe devoted to bacterial toxins was evoked by several scientists and resulted in 
the creation in 1981 of a steering committee where J. E. Alouf was an active member. 
He organized the first ETOX meeting in Seillac, France, a small town about 200 km 
from Paris. The site was very pleasant and quite appropriate for interactive discus-
sions between senior scientists and young students. The first ETOX meeting was a 
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great success largely due to the selection of the site and organization by J. E. Alouf, as 
well as the participation of many expert scientists in the toxin field with high standard 
presentations. The prototype of having a scientific, interactive meeting on toxins with 
a restricted number of participants allowed frank and open discussions on basic toxin 
concepts was adopted in the following ETOX meetings, which were organized every 
two years in different European places. The ETOX meetings remain among the most 
successful and popular meetings on the topic of bacterial toxins in the world.

The proceedings of the first meetings were published in special issues of Zentralblatt 
für Bakteriologie and then in International Journal of Medical Microbiology. 
However, these publications only discussed the recent advances in toxins, and J. E. 
Alouf planned to elaborate a book with a wider scope that would collect both basic 
concepts and recent developments in the bacterial toxin field. He selected the term 
“Sourcebook” to specify the importance of having basic reference documents that 
would provide not only an in-depth understanding of each individual toxins, but also 
comprehensive aspects on their common properties and modes of action. J. E. Alouf 
was familiar with teaching and wanted to share with other biologists and students the 
fundamental knowledge in his domain. Indeed, he was the director of a special course 
on general immunology at the Pasteur Institute, Paris, from 1974 to 1994, in which 
he included specific modules on bacterial toxins. This course was very appreciated 
by the students, and J. E. Alouf was very selective when choosing the candidates. He 
was on the frontier of two scientific domains, toxinology and immunology. He has 
characterized various bacterial hemolysins, but he was also interested in the antigenic 
properties of toxins, notably the superantigen activity of streptococcal toxins.

The first edition of the Comprehensive Sourcebook was published in 1991, as 
mentioned, and J. E. Alouf actively participated to the second and third editions. At 
the beginning of 2013, J. E. Alouf asked us whether we could help him prepare a new 
edition for Elsevier, even though he had been retired for six years. It was difficult to 
decline this kind invitation, and until the autumn of 2013, we worked together on the 
selection of chapters and author invitations. His health declined, but he was always 
interested in the progress of the book. Unfortunately, he passed away on March 20, 
2014, but his contribution to science will continue.

We are very grateful to all the authors who kindly accepted to provide excellent 
reviews to this fourth edition, allowing the continuity on this exciting adventure in 
toxins. We also thank the Elsevier staff for their professionalism and patience.

M. R. Popoff
D. Ladant



Evolutionary aspects of  
toxin-producing bacteria
Brenda A. Wilson, Mengfei Ho
Department of Microbiology, School of Molecular and Cellular Biology,  
University of Illinois at Urbana-Champaign, Urbana, IL, USA

Introduction

It has long been believed that microbes capable of causing human disease evolve over 
long periods of time through complex interactions between the microbes and their hosts. 
The prevailing view was that maintenance and amplification of mutations that might 
lead to increased virulence required a strong or persistent selective pressure, which 
could be applied only specifically from exposure to the host environment. However, 
new evidence suggests that acquisition of large DNA segments by horizontal gene 
transfer (HGT) may account for a much more rapid evolution of pathogens than was 
previously thought [1–4], particularly in terms of the origin of virulence factors such as 
toxins. Indeed, the abundance of toxin genes associated with “foreign” DNA segments, 
called pathogenicity islands (PAIs), in the genomes of most of the sequenced toxin-
producing pathogens compared to their nontoxigenic and nonpathogenic counterparts 
suggests that HGT must occur at a relatively high frequency in the real world [1–4]. 
Consequently, scientists are beginning to ask two questions: How many of the emerging 
or reemerging bacterial diseases are surfacing because of the acquisition of new toxin-
containing PAIs, new combinations, or recombinations of PAI-encoded toxin genes? 
And if HGT, with or without selective pressure, is a major driving force in the evolution 
of toxins and bacterial pathogens, where is it taking place?

Molecular ecology of toxin-producing bacteria

Pathogenicity islands, horizontal gene transfer, and the 
prevalence of toxins

Strong evidence now points to an important role for HGT (in the form of mobile PAIs) 
in contributing to genome variability and the evolution of pathogens [1–4]. Given a 
strong selective pressure such as that encountered in the host environment, a bacterium 
that has acquired new genes can rapidly undergo pathoadaptation to become more 
virulent [5]. The structural genes encoding most bacterial protein toxins are located on 
PAIs in the form of extrachromosomal plasmids, or within genomes as part of temper-
ate bacteriophages, putative transposons, integrated conjugative plasmids, or remnants 
of these mobile elements (see Table 1.1). Possible mechanisms through which HGT 
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Table 1.1 Selected PAI-encoded protein toxins

Protein toxins Gene Location Bacterial host References

Clostridial neurotoxins

BoNT/A botA1 Chromosome, plasmid C. botulinum [9]
BoNT/B botB Chromosome, plasmid C. botulinum
BoNT/C1 botC1 Prophage C. botulinum
BoNT/D botD Prophage C. botulinum
BoNT/Dsa botC/D Phage C. botulinum
BoNT/E botE Plasmid, phage C. botulinum,  

C. butyricum
BoNT/F botF Chromosome, plasmid C. botulinum, C. baratii [9,10]
BoNT/G botG Plasmid C. botulinum [9]
BoNT/H botH C. botulinum [11]
TeNT tet Plasmid C. tetani,  

C. argentinense
[9]

ADP-ribosylating toxins

Diphtheria toxin (DT) tox corynephages α, β, Ρ, π, δ, 
L, h, ω, (tox+), γ (tox−)

C. diphtheriae, 
C. ulcerans, 
C. pseudotuberculosis

[12–14]

Cholera toxin (CT) ctxAB CTXϕ, VPI V. cholerae, V. mimicus [7,15–18]
Heat-labile enterotoxin (HLT) elt, etx Plasmid, chromosome E. coli [13]
Pertussis toxin (PT) ptxA-E Chromosome PAI Bordetella pertussis [19]
Cholix toxin (ChxA) chxA Chromosome PAI V. cholerae (non-O1/

non-O139)
[20,21]



Table 1.1 Selected PAI-encoded protein toxins

Protein toxins Gene Location Bacterial host References

28S rRNA-depurinating toxins

Shiga toxin (ST) stx Phages S. dysenteriae, E. coli [22–24]
Shiga-like toxins (SLT) stx1 ϕ 19B E. coli [25]

stx2 ϕ933W E. coli [26]
stx2c ϕ2851 E. coli [27]
stx ϕ7888 S. sonnei [28]
stx1c ϕ6220 E. coli [29]

RTX (MARTX toxins) VcRTX Chromosome V. cholerae [30,31]
VvRTX chromosome V. vulnificus [32]

Cytolethal distending toxins (CDT)

CdtA, CdtC (B subunits) cdtABC Prophage E. coli [33]
CdtB (DNase A subunit) Plasmid pVir E. coli [34]
Typhoid A2B5 toxin pltBA, cdtB Phage S. enterica serovar 

Typhi
[35]

Deamidating toxins

Cytotoxic necrotizing factors
CNF1 cnf1 Chromosome (PAI) E. coli [36,37]
CNF2 cnf2 Plasmid pVir [34]
CNF3 cnf3 Transposon [38,39]
CNFy cnfY PAI Y. enterocolitica,  

Y. pseudotuberculosis
[40]

CNFp cnfP PAI P. damselae EMBL: 
EEZ39234.1

CNFm cnfM PAI M. viscosa [41]
Burkholderia lethal factor (Blf1) blf1 Chromosome (PAI) B. pseudomallei [42,43]
Cell cycle–inhibiting factor (Cif) cif λ Prophage E. coli (EPEC, EHEC) [44,45]
Cif homologue Yersinia (CHYP) cif Chromosome (PAI) Y. pseudotuberculosis [46]

(Continued )



Table 1.1 Selected PAI-encoded protein toxins

Protein toxins Gene Location Bacterial host References

Cif homologue Photorhabdus (CHP) cif Chromosome (PAI) P. asymbiotica,  
P. luminescens

[46]

Cif homologue B. pseudomallei (CHBP) cif Chromosome (PAI) B. pseudomallei [44]
Cif homologue Shigella (OspI) ospI Plasmid S. flexneri [47]
Pasteurella dermonecrotic toxin (PMT) toxA λ-like linear dsDNA phage P. multocida [48]
Bordetella dermonecrotic toxin (DNT) dnt Chromosome PAI B. pertussis,  

B. bronchiseptica,  
B. parapertussis

[49]

Photorhabdus asymbiotica toxin (PaTox) tox PAI P. asymbiotica [50]

Anthrax and Cereus toxins

Protective antigen (PA) pag Plasmid (pX01) B. anthracis [51]
Lethal factor (LF) lef
Edema factor (EF) cya
Certhrax toxin (CerADPRT) cer Plasmid (pBC218) B. cereus [52,53]

Staphylococcal toxins

enterotoxins sea, sep ϕN315, ϕMu50A S. aureus [54,55]
seg, sen, sei, sem, 
seo

PAI

sel, sek, sec3 TSST-1 PAIs
exotoxins set1-15 PAI
leukotoxins lukD, lukE PAI
exfoliative toxins eta ϕETA [56]

etb Plasmid [57]
etd PAI [58]

(Continued)



Table 1.1 Selected PAI-encoded protein toxins

Protein toxins Gene Location Bacterial host References

leukocidins pvl, lukD, lukE, 
lukF, lukM, lukS

ϕPVL, ϕPV83, ϕSLT [54,55,59,60]

hemolysins hla, hld, hlg PAI [61]
toxic shock syndrome toxin-1 (TSST-1) tst TSST-1 PAIs [62]

Streptococcal toxins

superantigen A ssa Prophages S. pyogenes [63,64]
exotoxins speA, speB, speC, 

speG, speH, speI, 
speK, speL, speM

streptolysin O (SLO) slo Chromosome [65]
streptolysin S (SLS) sls Chromosome
Heat-stabile enterotoxins (SLT) estA, estB Transposon E. coli [66]

ast (EAST-1) Plasmid

Pore-forming toxins

α-hemolysin hlyI,II Chromosome (PAI), 
Plasmid

E. coli [67,68]

enterohemolysins (Ehly 1, 2) ehl 1,2 Phage E. coli [36,37]
Pseudomonas cytotoxin ctx ϕCTX, PS21 P. aeruginosa [69,70]
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contributes to bacterial pathogenesis include exchange and recombination of toxin and 
other virulence genes among different bacterial populations; one-step acquisition of 
toxins and other virulence genes to increase colonization and survival against the host’s 
immune system or to provide means for dissemination within the host or between hosts; 
and provision of mechanisms to enhance survival in the external environment when 
outside the host body. Phages or lysogenic bacterial strains carrying toxin prophages 
might serve as the natural reservoir for toxin genes, with lysogenization and conversion 
processes taking place not only in the human or animal host (such as in the lungs or 
intestines), but also in the external environment, such as in food, water, soil, or other 
vectors or hosts (e.g., insects, amoeba, or plants) [1,6–8].

HGT under any of these conditions could produce new pathogenic strains and 
may account for the prevalence of related toxins among diverse pathogens. Examples 
can readily be found in some of the emerging or reemerging pathogens, including 
heterogeniety of the genes for diphtheria toxin, tox, and its iron-dependent regulator, 
dtxR, in clinical isolates of Corynebacterium diphtheriae from epidemic outbreaks 
[71]; production of superantigen variants among group A streptococci [63], exotoxin-
diversity among community-acquired versus hospital-acquired methicillin-resistant 
Staphylococcus aureus strain lineages [72]; cholera toxin production by Vibrio chol-
erae isolates [7,73]; heat-labile enterotoxin (a homologue of cholera toxin) produc-
tion by enterotoxigenic Escherichia coli strains (ETEC) [74]; and the widespread 
production of Shiga toxin variants among the Shigella and E. coli strains [75–77]. 
Indeed, studies on Shiga toxin (stx) gene–containing phages indicate that they are 
transmitted not only by temperate bacteriophages between different bacteria in vivo 
(i.e., in the intestines of humans and animals [78–80]), but also extraintestinally in 
aquatic environments, such as oceans [81], sewage, and other fecally contaminated 
water sources [76,82,83], and irrigation water, soil, and crops [84,85].

In addition, new studies indicate that phage biology may contribute to bacterial 
pathogenesis by allowing for export or release of toxins mediated by phage lysis or 
for toxin gene expression upon phage induction, particularly when optimal promot-
ers for the toxin gene are lacking in the new host. Many phage-encoded toxin genes 
are located near the phage attachment site, supporting acquisition by a transduction 
mechanism. For instance, corynebactriophages of C. diphtheriae carry the tox gene 
near the phage attachment site [86]. The Panton-Valentine-leukocidin (PVL) toxin 
genes, lukS-lukF, are also located close to the phage attachment site attP and inte-
grase (int) gene encoded by a mitomycin C–inducible temperate prophage, ΦPVL, 
in S. aureus strain V8 [87]. However, the Shiga or Shiga-like toxin (stx) genes are 
an exception. The stx1 and stx2 genes are downstream of the λ-like transcriptional 
activator Q homologue and upstream of the phage lysis and morphogenesis genes in 
the H-19B and 933W phages, respectively [25,88,89]. Several studies have demon-
strated that expression and release of the Stx proteins from the bacteria is mediated 
by phage induction and lysis [26,90,91]. This came as a surprise since several groups 
had previously identified a functional Fur-like promoter that was directly upstream 
of the stx1 gene and had reported that toxin expression was regulated by iron through 
this promoter [88]. However, subsequent studies indicated that phage induction by 
agents such as mitomycin C dramatically increased the production and release of Stx  
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by Shiga toxin–producing E. coli (STEC) strains far above that observed under iron 
regulation [90,91]. This was further confirmed by mutational analysis of the promoter 
regions [26]. The CT genes, ctxAB, are located on a filamentous prophage, CTXΦ, 
in V. cholerae. CT production is likewise regulated by two promoters: the PctxAB pro-
moter, which is located immediately upstream of the ctxAB operon; and the PrstA pro-
moter, which is located 5 kilobases (kbp) upstream of the ctxAB operon and regulates 
the phage virion structural genes [7].

Phage induction may also contribute to the release of toxins when specific protein 
secretion systems do not exist for the toxin, or when the toxin is too large for efficient 
export. Bacterial stress responses, including SOS-inducing antibiotics and oxidative 
stress, are known to trigger phage induction [92,93] and subsequent release of Shiga-
like toxins in E. coli [94,95], as well as the large clostridial toxins, ToxA and ToxB, 
from C. difficile responsible for nosocomial antibiotic-induced enterocolitis [92,96]. 
There is additional evidence that the introduction and induction of other lysogenic 
phages can regulate toxin gene expression in C. difficile during infection [97,98]. 
The toxin-encoding regions of different C. difficile strains are part of a transmissible 
pathogenicity locus (PaLoc) that appears to be evolving [99–102]. Promoters that 
control the phage lytic-lysogenic switch of the ΦSa3ms phage found in hypervirulent 
community-acquired S. aureus strain 476 also control the production of four phage-
encoded virulence genes for staphylococcal enterotoxins, SEA, SEG, and SEK, 
and finbrinolytic staphylokinase (Sak) [103]. Another example where this may be 
relevant, albeit not yet demonstrated, is for the Pasteurella multocida toxin (PMT), 
which is responsible for the symptoms of atrophic rhinitis in animals, a disease that is 
most prevalent and more severe when animals are under stressful conditions or dur-
ing coinfections [104]. The PMT gene (toxA) was reported to reside on a temperate 
bacteriophage [48].

Toxins encoded by plasmids, bacteriophages, and other 
pathogenicity islands

The clinical profile of diarrheal diseases caused by pathogenic E. coli strains is a 
composite of the various toxins and other virulence factors produced by those strains 
[105,106]. ETEC strains are characterized by the presence of two different plasmid-
encoded enterotoxins, the Type I heat-labile toxin (HLT-I), which is an AB5-type 
ADP-ribosylating toxin closely related to CT, and the heat-stable toxin (HST), which 
is one of several related small peptide toxins produced by different strains of E. coli 
that bind and activate intestinal guanylate cyclase receptors [107]. Some ETEC strains 
produce a second type of HLT (HLT-II), which is not neutralized by antisera against 
CT or HLT-I. HLT-II toxins are chromosomally encoded within predicted lambdoid-
like prophage PAIs and are much more diverse with evidence of having arisen via 
multiple recombination events [74]. ETEC and extraintestinal strains of E. coli 
from animals often carry another Vir plasmid, which encodes the gene for cytotoxic 
necrotizing factor 2 (cnf2) [34,108], as well as the gene for cytolethal distending 
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toxin (cdt) [109]. Uropathogenic E. coli (UPEC) strains, on the other hand, carry the 
cnf1 gene, which is homologous to the cnf2 gene but appears along with the gene for 
α-hemolysin (hly) on a chromosomal PAI [67,110,111]. E. coli strains associated with 
intestinal or extraintestinal infections in humans and animals that produce CNF1 or 
CNF2 are also sometimes referred to as necrotoxigenic E. coli (NTEC) [112]. Many 
extraintestinal E. coli strains contain variants of the α-hemolysin gene on different 
plasmids or chromosomal PAIs [67,113]. The plasmid-encoded enterohemolysin 
(ehxABD) of enterohemorrhagic E. coli (EHEC) strains also has strong homology to 
α-hemolysin, but the N- and C-termini are different in the two proteins [114].

STEC strains have emerged as a major group of food-borne pathogens [115,116]. 
Nearly all of the Shiga toxin genes are carried by temperate bacteriophages [22,23]. 
Indeed, it appears that no two sequenced Stx-encoding phages are the same, and 
indeed, other than the stx genes remaining linked to the λ-like transcriptional activa-
tor Q gene, nearly all of the phages are mosaics showing appreciable evidence of 
genomic recombination and gene-swapping events [77]. The two classes of Shiga tox-
ins found in STEC, Stx1 and Stx2, have similar structures and mechanisms of action. 
The stx1 gene is highly conserved and nearly identical to the stx gene from Shigella 
dysenteriae, whereas the stx2 gene shares about 58% DNA sequence homology 
with stx1 and has many distinct variants among different STEC isolates, with some 
containing multiple variants [117,118]. Some stx genes contain mosaic structures, 
suggesting that recombination between stx-phages can also occur in nature. In 2011, 
a large outbreak of diarrhea and hemolytic-uremic syndrome occurred in Germany 
due to an unusual, highly virulent strain of enteroaggregative hemorrhagic E. coli 
(EAHEC) serotype O104:H4 that had acquired through HGT a prophage encoding 
Stx-2, as well as additional virulence factors [119,120]. There is some evidence that 
the Stx-encoding phage may have emerged from a bovine reservoir of STEC [24].

The spore-forming, neurotoxin-producing Clostridia are strict anaerobic Gram-
positive bacteria that are found ubiquitously in the environment. Neurotoxin-
producing strains of Clostridium botulinum are defined by which of the closely 
related but antigenically distinct botulinum neurotoxins (BoNTs) that they produce 
(A1-A5, B1-B5, C1, CD, D, DC, E1-E8, F1-F7, G, or H), which differ at the amino 
acid level by up to 30% [9,121]. These toxins are also related to the tetanus neuro-
toxin (TeNT) produced by Clostridium tetani. Comparative phylogenic analysis has 
revealed the strong likelihood that HGT of BoNT genes has occurred via phage, 
mobile plasmids, and transposons not only within the C. botulinum species, but also 
with other clostridial species, including Clostridium butyricum, Clostridium baratti, 
and Clostridium argentinense [9]. The diverse locations of the genes for the BoNT 
toxins are illustrative of the appreciable degree of HGT that has occurred during their 
evolution [9,121].

The gene clusters for BoNT/A1, BoNT/A2, BoNT/B, and BoNT/F are often 
located on the chromosome [9,122,123]; the gene for BoNT/G is plasmid-encoded 
[124]; the genes for BoNT/C1 and BoNT/D are encoded by prophages [125,126]; 
and the gene for BoNT/E has been found on both phages and plasmids [127,128]. 
Gene clusters for BoNT/A3, BoNT/A4, or BoNT/B have also been found on large 
plasmids [129,130]. Certain strains of C. botulinum have been reported to contain 
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mixtures of toxin types. For example, there are reports of strains that harbor both 
botB and botF gene clusters, as well as strains that harbor both botA and botF clus-
ters or both botA and botB clusters [9]. Many type A strains have both the botA1 
gene cluster and a botB cluster, although the botB cluster in these cases often has 
a cryptic botB gene [131]. A C. botulinum strain has been reported harboring two 
chromosomally located gene clusters, encoding BoNT/A2 and BoNT/F4, and a 
large plasmid encoding the gene cluster for BoNT/F5 [10]. Strains containing a 
mosiac of toxins that are composites between botC and botD genes (e.g., combina-
tions of BoNT/Dsa, BoNT/CD, or BoNT/DC) have also been reported [132–134]. 
A clinical strain has recently been isolated that possesses two chromosomal gene 
clusters: one for a BoNT/B2-like toxin and another for a new BoNT serotype H 
[11,135]. All of the bot genes, but not the tet genes, have an upstream, cognate ntnh 
gene encoding a 130-kDa nontoxic nonhemagglutinin (NTNH) protein [9,123], 
which has been shown to function as a molecular chaperone or partner in a complex 
with the secreted toxin that protects the toxin from harsh environments such as the 
stomach [136]. Recent structural studies have revealed that the serotype A NTNH 
forms an interlocked complex with BoNT/A and that the NTNH structure has a 
conformation remarkably similar to that of BoNT/A [137,138].

PAI-encoded toxins delivered by specialized  
secretion systems

Another class of PAI-encoded virulence factors that modulate signaling, metabolic 
processes, or both in host cells, includes the type III, IV, and VI secretion systems 
(T3SS, T4SS, and T6SS, respectively) and their translocated effector proteins (see 
Table 1.2). Although they are not toxins per se, these effector proteins can be con-
sidered as such since they mediate cytopathic or cytotoxic effects in host cells upon 
being directly delivered to the host cell cytosol by the secretion apparatus. Virulence 
plasmids of many pathogens, such as Salmonella, Shigella, E. coli, and Yersinia, har-
bor conserved clusters of genes for one or more secretion system and their associated 
effector proteins that modulate host responses [139]. Computational methods based 
on protein structural motif and sequence analyses have been developed to predict the 
effectors from T3SS [140–143], T4SS [143–145], and T6SS [146,147].

The three pathogenic strains of Yersinia (Yersinia pestis, Yersinia enterocolitica, 
and Yersinia pseudotuberculosis) all contain a large virulence plasmid (pYV) that 
encodes the T3SS and associated Yersinia outer protein (Yop) effector proteins 
[155], which modulate trafficking and innate immune functions once delivered to the 
macrophage by the T3SS [156,157]. An analogous set of T3SS (Mxi/Spa) and effec-
tor (Ipa) proteins [154], which is involved in manipulation of intestinal innate and 
adaptive immune responses [158], are encoded on the large invasion plasmid (pInv, 
pWR100 in Shigella flexneri) harbored by Shigella and enteroinvasive E. coli (EIEC) 
strains [159,160]. EHEC and enteropathogenic E. coli (EPEC) deliver toxic effector 
proteins into host cells via a T3SS encoded by the locus of enterocyte effacement 
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Table 1.2 Selected PAI-encoded effector proteins

Effectors Gene Location Bacterial host References

Pseudomonas T3SS effectors

ExoS exoS Chromosome 
(putative PAI)

P. aeruginosa [148]

ExoT exoT Chromosome 
(putative PAI)

[148]

ExoY exoY Chromosome 
(putative PAI)

[149]

ExoU exoU Chromosome 
(putative PAI)

[150]

Salmonella T3SS Effectors

Sop proteins sopE SopE ϕ S. enterica serovars [151–153]
sopE2 Chromosome 

(phage?)
Typhimurium, 
Typhi

sspH2 Chromosome 
(phage?)

gogB GIFSY-1
ssel (gtgB, 
sfrH)

GIFSY-2

sspH1 GIFSY-3 (phage 
remnant)

sipA-D, sptP, 
avrA

Chromosome (SPI-1)

sseA-G, ssaB Chromosome (SPI-2)
sopB Chromosome (SPI-5)
sopA, slrP, 
sopD, sopD2, 
sseJ, sifA, sifB

Chromosome

sopE Chromosome (λ-like 
phage remnant)

S. enterica serovars
Hadar, 
Gallinarum, 
Dublin, 
Enteritidis

Shigella T3SS effectors

Ipa proteins ipaA-D Plasmid S. flexneri [154]
Enterotoxin senA Plasmid

Yersinia T3SS effectors

Yop proteins yopE, yopB, 
yopD, yopH, 
yopO, yopT, 
yopM, yopP/J

Plasmid Y. pestis,  
Y. enterocolitica,  
Y. pseudotuberculosis

[155]
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(LEE) PAI [161]. One of these T3SS effectors, Cif, although tightly associated with 
the LEE, is encoded outside the LEE by a lambdoid prophage, which is present in a 
wide range of EHEC and EPEC isolates and is also highly diverse in terms of other 
encoded effector genes [162].

Strains of the Salmonella enterica serovar Typhimurium harbor a number of 
PAIs and prophages, two of which contain genes that encode distinct T3SS apparati, 
which directly inject cytopathic effector proteins into the host cell at different stages 
of the infection cycle [163] to cause a variety of intracellular effects on the host cell 
[151]. The effectors secreted by the T3SS encoded by the Salmonella pathogenic-
ity island-1 (SPI-1) are involved in mediating the invasion of macrophages [164], 
while the effectors secreted by the T3SS encoded by SPI-2 are required for survival 
within the macrophage and during systemic infection [165]. The effector proteins 
injected by the SPI-1 T3SS, all of which affect various intracellular signaling pro-
cesses in the macrophage, include SopB (phosphatidylinositolphosphatase), SopE2 
(guanine nucleotide exchange factor, encoded by SPI-2), AvrA (deubiquitinase), 
SipB-SipC (translocon inserted into host cell membrane), SptP (tyrosine phos-
phatase), SipA (actin polymerization), SspH1 (E3 ubiquitin ligase, encoded by the 
GIFSY-3 prophage), SspH2 (encoded by a phage remnant found in most strains), 
SopD, SlrP, SopA, and sometimes SopE (encoded by another phage in some strains) 
[152,163,166–168].

Over 30 effector proteins are translocated by the SPI-2 T3SS [153], although 
not all S. enterica serovars contain the full repertoire of SPI-2 effectors, which 
are mostly encoded by different prophages in distinct regions on the chromosome 
[152,153,163,166–168]. These 30 SPI-2 effector proteins have a variety of reported 
intracellular enzymatic activities, including E3 ubiquitin ligase (SspH1, SspH2, SlrP), 
deubiquitinase (SseL), cholesterol acyltransferase (SseJ), Salmonella-induced fila-
ment (Sif) formation and extension (SifA, SopD2, PipB2, SseF), protease (GtgE), 
actin adenosine diphosphate (ADP)–ribosyltransferase (SpvB), kinase (SteC), and 
phosphothreonine lyase (SpvC) [153]. Sequence comparison of Salmonella isolates 
has revealed that different strains of Salmonella can harbor different sets of effectors, 
since frequently these effector proteins are themselves encoded by genes on different 
bacteriophages [169]. For example, analysis of the sopE gene among various S. enter-
ica strains indicates that HGT can occur between different phage families [169,170], 
suggesting that shuffling of the T3SS effector protein repertoires in Salmonella spe-
cies has created new epidemic strains [168]. Further, the Salmonella strain SL1344 
has sopE located on a prophage ϕSopE that is not found in strain 14028, while strain 
14028 has sspH1 located on prophage ϕGifsy-3, but does not have sopE [171]. 
Comparative genome analyses among various Salmonella isolates are now enabling 
the identification of additional T3SS effectors present on other lysogenic phages, such 
as the SseK/NleB T3SS effectors found on ϕST64B lysogens in the genome sequence 
of Salmonella strain SL1344, but not in the genome sequence of the commonly used 
laboratory strain LT2 [172].

Some Gram-negative bacteria utilize T4SSs to achieve the exchange of genetic 
material or translocation of virulence plasmids or effector proteins into the extracel-
lular medium or into their eukaryotic hosts [173,174]. Both the AB5 and the B5 forms 
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of the pertussis toxin (PT) complex are assembled in the periplasm of Bordetella 
pertussis, where they are then secreted into the extracellular medium via the Ptl-T4SS 
[175,176]. The nine structural genes for Ptl T4SS (ptlA-ptlH) are all located within the 
same operon downstream of the five ptx structural genes for the S1-S5 subunits of PT 
[177]. In Helicobacter pylori, the Cag-PAI encodes the oncogenic and immunomodu-
lating effector CagA, which is delivered into host cells directly using the Cag-PAI-
encoded T4SS [178,179]. The plant pathogen Agrobacterium tumefaciens has a VirB/
VirD4-T4SS system to deliver a range of virulence-associated effector proteins [180]. 
Some effectors, VirD2 and VirE2, are involved in processing and protection of the Ti 
plasmid for T4SS-dependent transfer and integration [173], while others, such as the 
transcription factor VIP1, suppress plant defense responses [181].

Many intracellular pathogens, such as Bartonella, Brucella, Coxiella, and 
Legionella, utilize T4SSs to deliver effectors from the bacteria-containing vacuole 
into the host cell cytosol [182]. For example, Bartonella henselae has seven VirB/
VirD4-T4SS-translocated effectors, BepA-BepG, required for cytopathic reactions 
and establishment of chronic infection [183]. The effector genes appear to have 
evolved via multiplication and subsequent functional divergence from a single 
ancestral bep gene [184]. A total of 11 VirB-T4SS effectors, BspA-BspK, have 
been identified in Brucella abortus, some of which are known to target secretory 
pathways in host cells [185]. Legionella pneumophila utilizes Dot/Icm T4SS to 
deliver over 300 effectors, targeting multiple host-signaling pathways and manipu-
lating transcription and translation machinery during intracellular growth in its 
own vacuolar compartment [186,187]. Coxiella burnetii encodes a T4SS that is 
homologous to the Legionella T4SS and that likewise delivers effectors required 
for intracellular replication and formation of its own vacuolar compartment [188]. 
T4SSs have now also been identified in Streptococcus and other Gram-positive 
bacteria, suggesting additional T4SS effectors may be associated with these Gram-
positive bacterial T4SSs [189].

Many Gram-negative bacteria use T6SSs for delivery of effectors into neighbor-
ing bacteria through a contact-dependent mechanism [190,191]. T6SS is prevalent 
in interbacterial competition within the infected host environment [191], where the 
T6SS effectors are frequently coproduced with their specific immunity proteins 
in the donor bacteria and are toxic only to the recipient bacteria. To date, there 
are only a limited number of reported T6SS effectors known to target eukaryotic 
host cells directly. The C-terminal actin-cross-linking domain (ACD) of VgrG1  
in V. cholerae has cytotoxicity against the amoebae Dictyostelium and mammalian 
J774 macrophages [192]. The VgrG1 in Aeromonas hydrophila has a VIP-2 like, 
C-terminal domain that ADP-ribosylates actin, causing cells to be rounded up 
[193]. The C-terminal domain (CTD) of VgrG5 from Burkholderia species has been 
found to cause complex effects on eukaryotic cells, which may help the pathogen 
in immune evasion and cell-to-cell spread, including fusogenic activity [194], 
multinucleation [195], and Rho-activation [196]. Like the T3SS and T4SS effectors, 
there may be an arsenal of yet-to-be-identified T6SS cytotoxic effectors harbored 
by bacteria to manipulate their hosts.
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Molecular evolution of toxins through genetic exchange

Genetic exchange and toxin evolution

If HGT is a major player in the evolution of toxin-producing pathogens, where do 
most of these transfers occur? And what about recombination events? Could it be 
that the host body is not the only setting where these types of evolution occur? This 
is of particular interest because many pathogens, including those that produce toxins, 
spend a substantial amount of their life cycle outside the host body.

Toxin evolution and transmission in the host

Microbes are defined by their environment, and for most pathogens, that environment 
is believed to be predominantly the human or animal host. Pathogenic bacteria estab-
lish infections in widely diverse host environments, ranging from the skin to various 
mucosal surfaces, such as the oral cavity, lungs, gut, and vagina. Consequently, spe-
cific host in vivo signals might be expected to modulate bacterial gene transfer events 
[197]. There are ample studies demonstrating that transfer of antibiotic resistance 
genes among different Gram-negative and Gram-positive bacteria can occur in the 
intestinal tracts of humans and animals [198–201]. A number of genetic analyses of 
the plasmid profiles from clinical fecal isolates indicate that HGT occurs rampantly 
within the human gut [198,199,202,203].

Conjugal gene transfer between different Salmonella strains has also been shown to 
occur within cultured human epithelial cells [204], suggesting that the phagocytic vacu-
oles or cytosol of animal cells could be a niche for HGT if bacteria conjugate within the 
intracellular environment. A comparative genome analysis of L. pneumophila has revealed 
an extensive degree of recombination and HGT events among bacteria and from eukary-
otes to bacteria (e.g., in shaping the genomes of L. pneumophila [205]). An interesting 
example of HGT can be found in the genetic evidence for homologous recombination 
within the vacuolating cytotoxin gene, vacA, which occurred among different H. pylori 
strains coinhabiting the stomach and resulted in chimeric vacA genes [206,207].

Genetic evidence supports that evolution of toxin genes in the Gram-positive staph-
ylococci is still occurring via phage-mediated HGT [54,208], particularly in relation 
to the various toxin gene clusters for superantigens (set), exfoliative toxins (eta, etb), 
and toxic shock syndrome toxins (tst) found in pathogenic strains. All human isolates 
(>8000 tested so far) of pathogenic S. aureus and Group A Streptococcus (GAS) 
produce superantigens [209]. Many of the widespread S. aureus pathogenicity islands 
(SaPIs) encode two or more superantigen toxins, with frequent recombination events 
within genes also occurring [55]. The most common superantigen gene found in SaPIs 
of clinical isolates is the tst gene, which encodes the toxic shock syndrome toxin-1 
(TSST-1), which is responsible for menstral-assoicated toxic shock syndrome [55]. 
Besides TSST-1, there are over 19 different superantigens, including the staphylococ-
cal enterotoxins (SEA, SEBn, SECn, SED, SEE, and SEG, where n denotes multiple 
variants) and the SE-like superantigens (SE-l H, SE-l I, SE-l J through SE-l X) 
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reported from S. aureus strains [209–211]. Comparative genome sequencing analy-
sis uncovered several virulence factor–encoding PAIs in a human clinical isolate of  
S. aureus, strain MRSA252, which are shared with S. aureus strains associated with 
bovine mastitis [212]. This strongly suggests that zoonotic contact can lead to HGT 
events and emergence of new virulence properties.

A similar evolutionary story of high variability and extensive HGT is told for the 
streptococci. GAS strains can produce one or more of the streptococcal pyrogenic 
exotoxins (SpeA, SpeC, SpeG through SpeM), which are related to the staphylococ-
cal superantigen family, streptococcal superantigen (Ssa), streptococcal mitogenic 
exotoxin Zn (SmeZn, where n denotes multiple variants), or SpeB, which is a cysteine 
protease with controversial superantigenic activity [209,210]. The prophage-encoded 
genes for SpeA (the scarlet fever toxin) and SpeC are variably present in clinical GAS 
isolates, and there is strong genetic evidence that they undergo HGT and recombina-
tion [63,213]. Comparative genome sequence analysis of 12 Streptococcus pyogenes 
strains revealed the presence of multiple different prophages within the otherwise rel-
atively conserved (90%) genomes [214]. The human pharyngeal cell has been shown 
to release a soluble factor that stimulates the lytic activation of S. pyogenes prophage 
[215]. Indeed, using a mouse model of S. pyogenes infection, the mammalian host 
was shown to promote both efficient phage induction at the mucosal surface, as well 
as subsequent lysogenic conversion of the nontoxigenic streptococci occupying the 
same niche [216].

The ctxAB genes that encode the A and B subunits of CT were found to be located 
on a filamentous prophage CTXϕ in naturally occurring clinical and environmental 
V. cholerae and Vibrio mimicus strains [7,15–17,217]. What was even more remark-
able was the finding that the phage CTXϕ uses as its receptor the toxin coregulated 
pilus (TCP), which itself is a colonization factor in the gut [218]. The genes for TCP 
are encoded by another putative prophage, VPIϕ, present in CTXϕ-positive Vibrio 
isolates. While classical pandemic strains of V. cholerae express TCP under a variety 
of conditions, more recent El Tor pandemic strains express TCP only in the infected 
mammalian host [7,219,220]. The vast majority of epidemic V. cholerae strains, 
which are responsible for the massive diarrheal disease cholera, do not produce CT 
or TCP pili when they are outside the human or animal host. Under certain laboratory 
conditions, they can undergo lysogenic conversion, but the most efficient conversion 
occurred within host intestines [18]. In addition, generalized transduction of CTXϕ 
by yet another phage (CP-T1) was found to be an alternative mechanism by which 
CTXϕ-carrying strains could transfer the CTXϕ prophage into nontoxigenic strains 
[221]. There is evidence for recent HGT of CTXϕ and VPIϕ between V. cholerae and 
V. mimicus, suggesting that in the environment, V. mimicus might serve as a reservoir 
for these phages and the potential emergence of new pathogenic isolates [7,15].

Pathogenic Bordetella species (B. pertussis, Bordetella parapertussis, and Bordetella 
bronchiseptica) are closely related Gram-negative bacteria that colonize the respiratory 
tracts of mammals [222]. Bordetella petrii is the only known environmental species 
of the Bordetella genus, and interestingly, lacks all of the known toxins found in the 
pathogenic species [223]. B. pertussis is a strict human pathogen responsible for whoop-
ing cough; B. parapertussis is a recently emerged variant that infects both humans and  
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sheep; and B. bronchiseptica is a broad host-range pathogen that infects primarily 
animals and occasionally humans. Comparative genome sequence analysis suggests 
that B. pertussis and B. parapertussis evolved from B. bronchiseptica in the recent past 
[224,225]. Interestingly, many of the genes encoding virulence factors, including the 
genes for PT (ptxA-E), adenylate cyclase-hemolysin (cya), dermonecrotic toxin (dnt), 
and tracheal cytotoxin (tct), can be found on distinct regions of the chromosomes in all 
three species. It was previously thought that PT expression differences in the strains 
were due to inactivating mutations in the promoter regions in B. parapertussis and B. 
bronchiseptica [226]. However, genetic analysis suggests that PT may be more tightly 
regulated in B. parapertussis and B. bronchiseptica and therefore is expressed only in 
vivo by these strains, while more recent mutations in the promoter region increased the 
transcription of the gene in B. pertussis [227].

Toxin evolution and transmission in the soil environment

Many bacterial pathogens, even those for which humans or animals can serve as the 
natural or primary reservoir, spend a substantial amount of time outside the host body 
in the external environment. This suggests that the evolution of pathogens through 
HGT may not occur only in the host environment. For example, it is now well recog-
nized that the selective pressure of xenobiotic pollutants in soil and water can lead to 
the acquisition by soil bacteria of plasmids encoding xenobiotic-degrading enzymes 
[228,229]. There is even some evidence that natural electrotransformation, as might 
occur during a thunderstorm, might be a feasible mechanism for increasing the fre-
quency of HGT in soil microcosms [230]. The impact of HGT via phages on the 
diversity and evolution of bacteria is also well established now [231–233].

Bacillus species are common spore-forming soil bacteria barely distinguishable at 
the genome sequence level [234–236], yet this group of bacteria differs considerably 
in their virulence properties. Bacillus subtilis is commonly used as a nonpathogenic 
laboratory model system for studying bacterial sporulation; Bacillus thuringiensis 
produces a number of insecticidal toxins widely used as pesticides in agriculture 
and in genetically modified plants to confer insect resistance; Bacillus cereus is a 
food-borne pathogen capable of causing human and animal gastrointestinal disease; 
and Bacillus anthracis is a human and animal pathogen that causes anthrax and has 
received much attention because of its potential use as a bioterror agent. The genes 
encoding the major virulence factors of B. anthracis responsible for anthrax, the 
anthrax lethal toxin and edema toxin genes (pag, lef, cya) and the poly-D-glutamate 
capsule biosynthetic genes (capBCA), reside on two large plasmids, pXO1 and pXO2, 
respectively [51,236,237]. Loss of the pXO2 plasmid resulted in the greatly attenu-
ated Sterne vaccine strain [235]. Although it does not appear that these plasmids are 
self-transmissible, there are reports suggesting that conjugative plasmids from other 
Bacillus species might be able to supply the conjugal transfer functions in trans for 
these two virulence plasmids [238,239]. If this is true, then it is conceivable that other 
Bacillus species may serve as environmental reservoirs for the anthrax toxin genes 
[235]. And, indeed, HGT is reported to be quite common among Bacillus species 
[239–243].
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Toxin evolution and transmission in aquatic environments

Numerous studies have shown that the concentrations of bacteriophages in natural 
aquatic environments can be high enough to be conducive for phage transduction, but 
they can be especially high in contaminated water systems [6,76,82–85]. The emer-
gence, evolution, and spread of antibiotic resistance has been firmly linked to HGT 
in aquatic environments [244,245]; similar findings have emerged regarding toxin 
genes [1,6,82–85]. As mentioned previously, there is now strong genetic evidence 
that epidemic strains of V. cholerae, the etiological agent of cholera, have acquired 
CT, TCP, and other virulence factor genes through bacteriophage transduction and 
conjugal transfer in aquatic environments, possibly through V. mimicus reservoirs 
[7,15–17,217]. A broad range of E. coli strains harboring stx2 (and to a lesser extent 
stx1) genes are commonly found in municipal sewage and various animal wastewaters 
[82,85]. Moreover, of the E. coli strains testing positive for toxin genes (only 1 out of 
59 representative strains was typed as O157:H7), about 50% from animal wastewa-
ter and 10% from human sewage were also able to produce the toxin proteins [82]. 
These findings not only indicate the presence of a significant exchange of these genes 
between bacterial populations in these environments, but also suggest a potential 
health risk, in that the bacteria also make the toxins.

Since HGT occurs at maximal frequencies when bacterial densities of potential 
recipients are high [246–251], one might ask how genetic exchange can occur in 
aquatic environments, where some bacteria, such as Vibrio, spend most of their 
time and where their concentrations are expected to be too low to be conducive to 
HGT. Studies have shown, however, that bacteria found in marine environments are 
often adherent to marine animals or particles, such as zooplankton or marine snow 
[252–254]. Indeed, Vibrio strains are often found in close association with zooplank-
ton as dense bacterial biofilms [254–257]. This finding correlates with the observation 
that zooplankton blooms frequently precede cholera outbreaks and that simple water 
filtration to remove zooplankton can significantly reduce the incidence of cholera 
cases in endemic areas [258]. Similar findings have been observed for other environ-
mental bacteria [259]. The presence of particulate matter in aqueous environments 
was found to increase potential pathogenic bacteria-phage interactions and thereby 
stimulate transduction [6,259,260], the outcome of which has been proposed to sup-
ply virulence factors, such as toxins, that benefit both the bacteria and phage and 
contribute to their evolution as pathogens [261].

Toxin evolution and transmission in the phyllosphere

Other environmental settings could also serve as ideal locations for biofilm forma-
tion and consequent HGT [260,262]. One such important setting is the phyllosphere 
(i.e., plant surfaces). Numerous examples of relatively high conjugal transfer rates 
on the phylloplane of plants have been observed within and between species of 
Pseudomonas and Rhizobium, especially when humidity is high [263–265]. The soil 
bacterium Ralstonia solanacearum, a plant pathogen, even develops a state of natural 
competence in plant tissues and readily exchanges genetic material with plants and 
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other bacteria [266–268]. Aggregation or clustering of the bacteria into microhabitats 
in the interstices and stomata of the leaf surface has been found to stimulate bacterial 
survival and conjugal transfer [269,270]. HGT between plants and bacteria, such as 
Acintobacter baylyi, in the phyllosphere have also been visualized in situ using fluo-
rescence microscopy [271].

Evidence for phage-mediated transduction among bacterial strains on the phyl-
loplane has also been documented for a number of human pathogens [272,273], 
the plant and opportunistic human pathogens Pseudomonas aeruginosa, Serratia 
marcescens and Serratia liquefaciens, plant pathogens [274–276], and indigenous 
plant microbes, Pseudomonas fluorescens, Pseudomonas syringae, Pseudomonas 
viridiflava, and S. liquefaciens [231,277]. The transmission of E. coli O157:H7 and 
Salmonella species from manure-contaminated soil and irrigation water to various 
vegetables (lettuce, spinach, potatoes, carrots), sprouts (alfalfa, radish), and other 
plants, as well as the subsequent disease outbreaks, has been thoroughly documented 
[272,273]. Indeed, the toxin-producing bacteria were found not only on the plant 
surfaces, but also throughout the root system and within the edible portions of the 
plant tissues [278]. The implications of this finding, in terms of the spread of human 
disease through fresh produce, are alarming and may account for the emergence of 
new pathogens and disease outbreaks [273].

Toxin evolution in the guts of insects and other vectors

Bacteriophages and other mobile genetic elements also play important evolutionary 
roles in bacterial endosymbiont systems of insect hosts [279–282]. The extensive 
genome diversity found among parasitic arthropod bacterial symbionts (Wolbachia, 
Rickettsia) was shown to reside primarily in regions originating from HGT between 
Wolbachia strains that coinfect a diverse set of insect host cells [280,282,283]. 
Amoeba have also been found to serve as the environmental reservoir for a number 
of pathogenic bacteria that can facilitate HGT between the bacterial coinhabitants, as 
well as the bacteria and their amoeba host [279]. Recently, mcf-like genes were identi-
fied in the fungal genomes of the Epichloë species, which are intercellular symbionts 
of grasses and help protect the host grasses from insects [284]. These mcf-like genes 
are homologues of mcf1 and mcf2 found in the nematode symbiont Photorhabdus 
luminescence and fitD from plant-associated Pseudomonas species. The pore-forming 
domains of these insecticidal toxins share homology with the large modular toxins 
from Clostridium difficile, TcdA and TcdB. These results suggest that interdomain 
genetic exchange involving bacteria, fungi, insects, and plants can occur in an external 
environment.

B. thuringiensis produces a considerable arsenal of toxins directed against insects 
and nematodes, with multiple toxin-encoding genes on plasmids and various mobi-
lizable genetic elements on the chromosome [285]. Selective pressure and HGT, 
combined with recombination and shuffling between toxin genes (resulting in domain 
swapping) and sequence divergence, has yielded a wide range of host specificities 
for these insecticidal toxins [235,285–287]. The genes encoding the crystal protein 
toxins, for example, are frequently clustered on different transmissible plasmids or 
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transposable elements [235,285–288], and conjugation between different strains has 
been observed in the soil environment and within insect guts [289–292]. Individual 
toxins have insecticidal activity only against a limited range of insect species (i.e., 
usually only within certain insect orders). The composite of the toxins produced by a 
particular strain thus defines the total insecticidal specificity and activity spectrum of 
that bacterial strain [285,286,288].

Accumulating evidence has lead some researchers to put forth the proposal that 
HGT within the guts of insects commonly associated with domestic animals may rep-
resent a key link to the transmission of antibiotic resistance and other pathogenic traits 
in bacteria found in contaminated environments [293]. For example, houseflies and 
blowflies have been reported to carry toxinogenic E. coli O157:H7 [294–299], as well 
as other pathogens such as Salmonella and Listeria [300,301]. Plasmid transfer from 
Erwinia herbicola to Enterobacter cloacae was observed in the guts of silkworms 
[302]. Both conjugative and mobilizable plasmids from E. coli can be transferred to 
a wide variety of Proteobacteria within the gut of soil microarthropods [303,304], 
which could play host to HGT of toxin genes in E. coli-contaminated water or soil. 
Y. pestis, the causative agent of plague, has also been demonstrated to be capable of 
interacting with and acquiring plasmids from E. coli in the midgut of the flea at trans-
fer frequencies of about 10−3 per recipient [305]. One might ask whether toxin gene–
encoding plasmids, phages, or other mobile elements might also be transferred within 
the guts of insects, and, indeed, such transfers can occur and have occurred. For 
example, efficient gene transfer of plasmids encoding δ-endotoxin has been observed 
between different strains of B. thuringiensis in various arthropod hosts [306].

Toxin evolution in biofilms and regulation by quorum sensing

Evidence is accumulating that HGT and biofilm formation are interconnected 
[307–314]. It appears that the high rates of HGT observed in bacterial biofilms 
may be attributable to quorum-sensing control of the conjugation and production 
of exoenzymes, toxins, and other virulence factors, in addition to biofilm formation 
[247,251,263,307,315–317]. Roseobacter species and other environmental bacteria 
besides Vibrio associate with marine snow and also produce acyl homoserine lac-
tones. Hence, these bacteria use quorum sensing to regulate phenotypic traits (e.g., 
biofilm formation, metabolite/toxin production, conjugation) when their populations 
in the marine snow environment reach adequate densities [318,319]. Indeed, quorum-
sensing autoinducers produced by other bacteria within a polymicrobial biofilm have 
been shown to promote HGT among Vibrio species [315].

High levels of HGT and genetic recombination also occur in vivo within the host 
environment, such as during nasopharyngeal carriage and cocolonization of S. pneumo-
niae strains in biofilms, suggesting that the environment of the nasopharynx is highly 
conducive for promoting transformation [320]. The strong conservation of virulence 
determinants (e.g., toxins) among clinical and environmental isolates of P. aeruginosa 
supports the notion that conserved selective pressures for the maintenance of the viru-
lence traits exist in the environmental reservoir [321]. Evidence suggests that quorum-
sensing regulation of the formation of biofilms and the production of toxins may have 
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played a critical evolutionary advantage in the environment by providing a protective 
mechanism through which the bacteria are able to resist flagellate and other protozoan 
predation and thereby persist outside the human host [322–325]. Similarly, the effector 
protein toxins that are delivered by the Icm/Dot type IV secretion system of L. pneu-
mophila appear to be equally effective in mammalian cells and in amoeba [186].

Another well-characterized example of biofilm and toxin regulation through 
quorum sensing can be found for the opportunistic pathogens P. aeruginosa and 
Burkholderia cepacia complex in the lungs of cystic fibrosis (CF) patients [316,326–
329], where both bacteria form aerobic and anaerobic biofilms that differ signifi-
cantly in virulence and phenotypic properties [323,324,330]. Indeed, there is strong 
evidence for distinct pathoadaptive mutations occurring over time in these systems 
[316,326,328,331,332], including evidence of the pathogens interacting and exchang-
ing virulence-associated genes with each other. Other bacteria are emerging as 
pathogens in the CF lung as well [333,334]. For example, in the CF lung, quorum-
sensing systems in P. aeruginosa regulate the formation of biofilms, as well as toxin/
exoenzyme production. Interestingly, whereas the expression of exotoxin A (ExoA) 
and various protease and phospholipase exoenzymes are up-regulated by quorum 
sensing in biofilms, the T3SS and its translocated effectors (ExoS, ExoT, ExoY, and 
ExoU), which are important only when the bacteria are in direct contact with the 
host cells, are down-regulated by quorum sensing [335,336]. One exception to the 
strong conservation of virulence genes in P. aeruginosa is the presence of the genes 
for exotoxin S (ExoS) and exotoxin U (ExoU), with isolates from different clinical 
and environmental settings possessing one or the other of the exoS or exoU genes, but 
not both [321,337]. It has been suggested that one possible explanation may be that 
expression and delivery of one or the other toxin might provide a selective advantage 
in a particular, as-yet-unidentified, target host or tissue site [321,338].

Vaccines and toxin evolution

Despite high vaccination coverage and good, long-lasting immunogenicity in many 
populations [339], the once nearly eradicated diseases diphtheria and pertussis 
have unfortunately reemerged as a global health threat, even in developed countries 
[340–347]. One possible explanation for this reemergence is that the constant selec-
tive pressure imposed by immunization might have resulted in increased antigenic 
divergence in the remaining bacterial population. Consequently, the effects of 
vaccination on toxin evolution are beginning to be examined [340,341,343,348–353].

Comparative genetic analysis of the genes for B. pertussis PT and pertactin (an 
outer-membrane protein) between epidemic isolates and the vaccine strains revealed 
that expansion of strains antigenically distinct from vaccine strains has occurred 
[340,341,348–350,352–354]. These findings strongly implicate vaccination as a 
strong driving force in the continuous evolution of the B. pertussis population and 
may forebode the emergence of novel variants resistant to vaccination. Moreover, 
since pertactin and PT are the primary bacterial components in acellular pertussis 
vaccines (ACVs) that were introduced in the 1970s and have replaced the whole-cell 
vaccines (WCVs) in some countries, these findings throw into question the long-term 
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efficacy of ACVs. Indeed, the recent pertussis outbreaks in the United States have 
been linked primarily to switching WCVs for ACVs, which occurred in the 1990s, and 
waning immunity associated with ACVs [340,341,343]. The practice of nonmedical 
exemption of vaccination also appears to enhance the risk of pertussis [355]. While 
the efficacy of ACV is been reevaluated [345] and the pathogenesis of Bordetella is 
being thoroughly scrutinized [356], these recurring pertussis outbreaks could further 
exacerbate the selective pressure for the evolution of antigens.

As a result of longstanding immunization programs using the diphtheria toxoid, 
most current isolates of C. diphtheriae or Corynebacterium ulcerans are nontoxi-
genic [354], yet toxigenic strains are still present [344,347,354,357,358]). While 
nontoxigenic strains are devoid of the tox gene, there is the fear that these strains 
could potentially be converted into toxigenic strains by exposure to a corynebacterio-
phage β carrying the tox gene. There is also the fear that the continued presence of 
nontoxigenic strains in immunized populations and the potential import of toxigenic 
strains from endemic areas such as Russia might allow phage conversion to occur 
[344,354,357,359]. In addition, it has been shown that recombination events are pos-
sible between strains harboring phages that contain tox genes and nontoxigenic strains 
that harbor phage with defective tox genes or by reversion of the defective tox gene 
through spontaneous mutation [360], such that any of these scenarios might result in 
reversion to full toxigenicity.

The high potential of phage-mediated or other HGT-mediated conversion of non-
toxigenic bacterial strains, particularly within the host environment, has also raised 
serious safety concerns regarding the use of live bacterial for potential biomedical 
applications such as live-cell vaccine development, probiotics, or other therapeutics 
[361,362]. While it was well known that the DT gene could be easily transmitted via 
temperate phage between toxigenic and nontoxigenic strains of C. diphtheriae, this 
was not thought to be a problem for bacteria that did not appear to be able to transfer 
their genes between pathogenic and benign strains. However, this perception was 
contradicted by the finding that the CT gene, which was previously thought to be on a 
putative prophage PAI that was no longer transmissible, could actually be transferred 
in vivo in the host environment [18]. Recently, it was demonstrated that the chromo-
somally located PaLoc PAI of C. difficile, which encodes the large glycosyltransferase 
toxins, TcdA and TcdB, could convert via conjugation a nontoxigenic strain into a 
toxin-producing strain [361]. This finding has broader implications regarding the 
safety of using nontoxigenic, avirulent strains as therapeutic delivery vehicles.

Modular recombination of bacterial toxins

Bacterial toxins with structurally and functionally homologous activity domains but 
different binding domains, such as DT and Pseudomonas ExoA [363], or with similar 
binding domains but structurally and functionally unrelated activity domains, such as 
STx, PT, CT, and HLT [364], have been known since the early days of bacterial toxin 
research. The occurence of these related toxins suggests a possible process of modular 
recombination in toxin evolution. With the rapid growth in the volume of available 
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microbial genomes, a vast number of additional examples of structurally or function-
ally related bacterial toxins have emerged. This modular recombination process could 
involve both HGT and additional insertion-deletion processes.

One interesting example of modular recombination is the prevalence of the CNF-
like domain in toxins or putative toxins found in a variety of bacteria. CNF1 in 
uropathogenic E. coli (UPEC) strains, CNF2 in EPEC strains, and the dermonecrotic 
toxin DNT in B. bronchiseptica were first identified as Rho-modifying factors in both 
human and animal clinical isolates [365,366]. The C-terminal (about 300 residues 
of these toxins) harbors a Rho-modifying γ-glutamyl-deamidase activity [367–369]. 
Additional CNF homologues have now been found in NTEC strains of E. coli (CNF3) 
[38], Y. pseudotuberculosis (CNFy) [40], Photobacterium damselae (CNFp, EMBL: 
EEZ39234.1) and Moritella viscosa (CNFm) [41]. All CNF homologues share a simi-
lar N-terminal fragment of about 700 amino acid residues that also exhibits homol-
ogy with the N-terminus of PMT, while the N-terminus of DNT has homology to the 
N-terminus of a putative toxin from Photorhabdus carrying an unrelated protease 
effector domain. In addition to CNFs and DNTs, the CNF-like Rho-activating domain 
has been found in other classes of toxin effectors.

This diverse recombination allows microbes to explore various forms of entry 
pathways into host cells, including receptor-mediated endocytosis by AB toxin sys-
tems, insecticidal toxin complex systems, T3SSs, T6SSs, and other as-yet-undefined, 
large effector systems (Figure 1.1A). Sequence comparison of all CNF domains found 
among various effectors showed a wide spectrum of heterogeneity (Figure 1.1B). 
Among these, the CNF and DNT clades are most dissimilar. The large number of 
CNF-related T3SS effectors clustered into two clades (Vibrio parahaemolyticus VopC 
and P. luminescens Pnf). With such a diversity of CNF activity domain sequences, it 
is likely that CNF-like effectors could have evolved differential substrate selectivities. 
For example, the T3SS effector VopC only activates Rac and Cdc42, but not RhoA 
[372], while all CNFs and DNTs tested activate RhoA, Rac, and Cdc42 [373].

Multifunctional autoprocessing RTX toxins (MARTXs) of V. cholerae and Vibrio 
vulnificus strains are another case of modular recombination. Related MARTX 
sequences have been identified in many Vibrio species and a diverse number of other 
bacteria [374]. MARTXs consist of conserved N-terminal A repeats, B repeats, and 
C-terminal C repeats. The conserved cysteine protease domain (CPD) responsible 
for autoprocessing is located immediately before the C repeats. Between the B 
repeats and CPD are up to five multifunctional effector domain inserts, including an 
actin-crossing domain (ACD), a Rho GTPase-inactivation domain (RID), and other 
domains of unknown function.

There are a number of bacterial mono-ADP-ribosylating toxins (mADPRTs) and 
effectors that play important roles in pathogenesis. Based on sequence similarity, 
these mADPRTs have been classified into four families: DT/ExoS-like toxins, CT/
PT-like toxins, C2-like toxins, and C3-like toxins [52]. Combining a structure-
based data-mining approach with a yeast growth-defect phenotyping test for activ-
ity verification, new types of domain assembly for mADPRTs have been identified 
[53,375,376]. Similar bioinformatic approaches should be able to uncover even more 
examples of new toxins derived from modular domain recombination.
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Figure 1.1 Modular organization of CNF-related bacterial effector toxins. (A) Shown 
is a schematic diagram depicting different classes of proteins with CNF-related effector 
modules, such as the T3SS effectors from V. parahaemolyticus VopC and P. luminescens 
Pnf; cytotoxic necrotizing factors such as E. coli CNF1, CNF2, and CNF3, and Y. 
pseudotuberculosis CNFy; insecticidal toxins such as Y. entomophaga YenC1, E. mallotivora 
TccC3; T6SS factors from E. coli such as VgrG-CNF; dermonecrotic toxins such as B. 
pertussis DNT; and large CNF-like domain-containing protein effectors such as C. davisae 
effector. (B) A MEGA5 maximum likelihood phylogenetic tree [370] was constructed from 
MUSCLE alignment [371] of protein sequences homologous to the CNF1 activity domain, 
as defined in PDB entry 1hq0. Numbers on each node was calculated by a bootstrap method 
after 500 replicates. The GenBank accession number and the range of residues used for 
comparison are listed for each sequence.
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Conclusion

The evolution of bacterial toxins involves HGT and recombination through exposure 
to a combination of both the host and external environments. Most toxin genes are 
located on PAIs on plasmids or in the bacterial chromosome as prophages or other 
transmissible elements. Genome sequencing and genetic analysis of toxin genes in 
epidemiological isolates may provide more information about their extent and limita-
tions, as well as regulatory mechanisms that influence HGT and recombination and 
their impact on toxin evolution.
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